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PFOPELMT HEATING STUDIES WITH W A L L  AND NUCLEAR HEATING 

by Bo H. Anderson, S. C. Huntley, and D. J. Connolley 

cu Lewis Research Center 

F;'  INTRODUCTION 

CD 
(i! cu 

One problem i n  the  design of nuclear space vehicles i s  the  i n a b i l i t y  

t o  determine the e f f ec t s  t h a t  heating of t h e  propellant have on t h e  weight 

optimization of the  vehicle system. For a given set of heating conditions 

a knowledge of t h e  s t a t e  of t h e  l iquid i s  fundamental t o  meet t he  pump 

requirements. Fcr a given set of pump requirements, t h e  appropriate 

l i q u i d  state can be achieved i r r  two ways: 

and nuclear shielding t o  prevent excessive temperature rise, o r  (2)  in-  

crease the  tank pressure t o  compensate f o r  the  propellant temperature 

rise. Both of these methods, however, necess i ta te  an increase i n  t h e  

gross weight of t he  vehicle. It i s  apparent t h a t  employment of e i t h e r  

method t o  optimize the  vehicle weight requires  a knowledge of t he  state 

of t h e  l iquid.  

(1) use thermal insu la t ion  

The state of t he  l i qu id  can be c r i t i c a l l y  dependent on t h e  heat- 

t ransfer  processes involved. The vehicle w i l l  receive thermal rad ia t ion  

from th ree  sources, d i r ec t  solar radiation, planetary radiat ion,  and 

albedo o r  re f lec ted  radiation. 

na tu ra l  convection boundary layer  f low along the tank w a l l .  The w a r m  

f l u i d  car r ied  by t h e  boundary layer  accumulates a t  t he  l i q u i d  surface 

t o  form a s t r a t i f i e d  layer. For a nuclear vehicle, t h e  propellant w i l l  

also receive rad ia t ion  i n  t h e  form of gamma rays and neutrons t h a t  leak  

cu t  of the reac tor  and by capture gamma rays that  are born when thermal 

This type of heating gives r ise t o  
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neutrons a r e  absorbed. Nuclear radiation has t h e  e f f e c t  of increasing 

t h e  k ine t i c  energy of the prcpel lant  molecule. T3is increase i n  t he  

k ine t i c  energy of t he  molecule is fe l t  loca l ly  i n  the form of heat. Thus 

nuclear rad ia t ion  can be characterized as source heating, which i s  non- 

I uniform i n  nature because of the absorption propert ies  of t he  propellant. 

This type of heating is  inherent ly  unstable and gives r i s e  t o  turbulent  

mixing. Relatively l i t t l e  information is available on the  flow and heat 

t r a n s f e r  of a confined f l u i d  sub jec t ed to  the types of heating described, 

i n  pa r t i cu la r  when the  f l u i d  is  contained by p rac t i ca l  types of tank 

geometries. 

Mcst of t h e  work on the problem of  analyzing the  state of the  l i q u i d  

has been of a semi-empirical nature with l i t t l e  o r  no experimental ver i -  

f ica t ion .  I n  reference 1, equations are presented t h a t  give t h e  dimen- 

s ion less  parameters involved i n  t h e  establishment of temperature gradi-  

I en t s  i n  a nondraining cy l indr ica l  tank. An approximate treatment of t h e  

I propel lant  heating problem appears i n  references 2 and 3. I n  reference 2 

an ana ly t ica l  flow model was developed that is  primarily concerned wi th  

I the  development of the s t r a t i f i e d  layer  i n  the  course of time f o r  t h e  

nondraining tank. Reference 3 presents an approximate numerical approach 

t o  t h e  s t r a t i f i e d  l aye r  problem f o r  both draining and nondraining tanks. 

A simplif ied flow model is  postulated where the temperature p r o f i l e  i n  
1 

t he  s t r a t i f i e d  l aye r  i s  considered t o  develop i n  a s e r i e s  of f i n i t e  sub- 

layers ;  t h e  temperature i s  constant within each layer but variable between 

layers.  - 
I n  an e f f o r t  Po obtain fu r the r  in fomat ion  on t h e  flow behavior in-  

duced by w a l l  and nuclear inves t iga t ion  was i n i t i a t e d  at  t h e  
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NASA-Lewis Research Center concurrent with t h e  work of references 1, 2, 

and 3 and i s  presented herein. 

phases. 

flow behavior of a confined f l u i d  subjected t o  w a l l  and simulated nuclear 

heating were studied i n  a small-scale 1-gallon-capacity tank. 

heating w a s  simulated by permitting infrared rad ia t ion  t o  be absorbed i n  

a so lu t ion  of two pa r t s  tr ichloroethane t o  one pa r t  e thy l  alcohol. This 

first phase of t h e  investigation, published i n  reference 4, provided 

v i sua l  s tud ies  of flow behavior and experimental information upon which 

a theo re t i ca l  flow model w a s  based. 

ana ly t i ca l  study using t h i s  flow model t o  pred ic t  t h e  l i qu id  t e y e r a t u r e  

gradient  as a function of' time after the start of flow when a tank is  

subjected t o  w a l l  and/or nuclear heating. 

of l i q u i d  hydrogen experiments were performed t o  inves t iga te  t h e  behavior 

of l i q u i d  hydrogen subjected t o  (1) wall heating and ( 2 )  w a l l  and source 

heating i n  a nuclear radiat ion f i e l d .  

i n  125-gallon l i q u i d  hydrogen tanks. 

phase w a s  applied t o  predict  t h e  results of t h e  hydrogen experiments3 

'This invest igat ion w a s  conducted i n  three  
1 

I n  t h e  f irst  phase, t h e  important f ac to r s  r e l a t ing  t o  t h e  basic  

Nuclear 

The second phase consisted of an 

I n  t h e  t h i r d  phase, a series 

These experiments were car r ied  out 

The analysis  developed i n  t h e  second 

SYMBOLS 

cross-sectional area of tank 

parameter defined by eq. (12) 

parameter defined by eq. (13) 

spec i f i c  heat  

parameter defined by eq. (18) 

parameter defined by eq. (14) 
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parameter defined by eq. (19) 

i n i t i a l  l i qu id  l e v e l  

parameter defined by eq. (10) 

parameter defined by eq. (22) 

parameter defined by eq. (8) 

parameter defined by eq. (8) 

w a l l  heating flux 

nuclear heat deposition 

temperature 

t i m e  

mass flow rate 

a x i a l  distance measured from tank bottom 

parameter defined by eq. (20)  

parameter defined by eq. ( 2 1 )  

thickness of s t r a t i f i e d  layer  

parameter defined by eq. (16)  

parameter defined by eq. (5) 

parameter defined by eq. (17)  

parameter defined by eq. (5) 

density 

surface area 

temperature difference, T - T i  

Subscripts : 

i i n i t i a l  conditions 

n nuc1ee;r heating contribution 
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ref reference conditions 

S surface conditions 

s,Z l imi t ing  conditions 

W w a l l  heating contribution 

1-D EXPERIMENT 

This experiment w a s  designed primarily f o r  d i r e c t  v i sua l  observation 

of t he  f l u i d  behavior induced by simulated nuclear heating, w a l l  heating, 

and a combination of t h e  two types of heating. A simple apparatus w a s  

designed t h a t  permitted d i r ec t  v i sua l  observation of the  induced f l u i d  

motion. 

t o  be absorbed i n  a so lu t ion  of tr ichloroethane and e thyl  alcohol. 

Nuclear heating w a s  s i m u l a t e d  by permitting inf ra red  radiat ion 

Inf ra red  rays axe a form of electromagnetic radiat ion,  which when 

absorbed by a f l u i d  cause molecular agitation. 

k ine t i c  energy of t h e  molecule i s  fe l t  l o c a l l y  i n  the  form of heat. 

spec t ra l  absorption and hence t h e  attenuation p r o f i l e  can be controlled 

t o  some extent by mixing f l u i d s  with d i f fe ren t  absorption charac te r i s t ics .  

For t h i s  experiment, the  solut ion mixture of two pa r t s  tr ichloroethane 

t o  one pa r t  e thyl  alcohol gave a center l ine heating p r o f i l e  that w a s  

similar t o  t y p i c a l  nuclear prof i les .  

This increase i n  t h e  

The 

Inasmuch as t h i s  work has been presented i n  d e t a i l  i n  reference 4, 

only per t inent  d e t a i l s  are reviewed herein. 

Experimental Apparatus 

Figure 1 is  a schematic diagram o f  t h e  experimental arrangement 

consis t ing of a two-dimensional g lass  tank, in f ra red  heating lamps, and 

support s t ructure .  The s ides  and bottom of t h e  tank were fabr ica ted  
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from 1/8-inch-thick pyrex p l a t e  g l a s s  and the  f ron t  plates of t he  tank, 

through which t h e  f l u i d  motion w a s  viewed, consisted of 1/4-inch-thick 

pyrex p l a t e  glass.  The v i e w  tank w a s  12  inches high, 8 inches wide, and 

2 inches deep ( ins ide  dimensions). 

4.26-inch-long s ides  tha t  were set at  angles of 45 degrees w i t h  respect 

The bottom portion of t h e  t ank  had 

t o  the  tank axis. An ou t l e t  port  w a s  located i n  t he  bottom of the  tank 

t o  permit t h e  f l u i d  t o  discharge. 

of t he  t a n k  f o r  the f i l l  l i n e ,  vent l i ne ,  and instrumentation. Three 

1000-watt in f ra red  lamps, located as shown i n  f igure  1, provided var iable  

Access ports  were located i n  t h e  top  

heat input t o  the  f luid.  

t o  insure  monodirectional radiation. The two v e r t i c a l  s ide  w a l l s  of the 

Each lamp was provided with a parabolic r e f l e c t o r  

tank were blackened t o  provide only w a l l  heating. The s l a n t  and bottom 

sec t ions  were c l ea r  t o  allow the  infrared rad ia t ion  t o  penetrate  t he  tank 

and be absorbed by the  f lu id .  

Qua l i t a t ive  data of  the induced f l u i d  motion i n  the tank were obtained 

by use of a Schlieren system. I n  addition, axial temperature d i s t r ibu t ions  

were obtained w i t h  shielded thermocouples (see fig.  1). 

Results and Discussion 

Figure 2 shows a x i a l  temperature p ro f i l e s  a t  severa l  t i m e s  after start 

I of heat ing with nonuniform source and w a l l  heating f o r  a nonflowing system. 

The r e s u l t s  ind ica te  tha t  two d i s t i n c t  regions developed i n  t h e  main bulk 

of f lu id :  

t o  form a cha rac t e r i s t i c  stratif ied layer,  and a lower region where source 

heating dominated t o  form a uniform temperature prof i le .  

mentioned can also be seen i n  the  Schlieren photograph presented i n  f i g -  

ure  3. 

an upper region where the e f f ec t s  of w a 3 1  heating predominated 

The two regions 

Nonuniform source heating produced turbulent  mixing with t h e  

1 
- 1  
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general  motion tending t o  be upward. The f l u i d  continued t o  rise u n t i l  it 

encountered the s t r a t i f i e d  layer,  which is a region of higher temperature. 

Upon encountering the s t r a t i f i e d  layer the buoyant force became zero, pre- 

venting the motion of f l u i d  caused by source heating t o  penetrate the 

s t r a t i f i e d  layer .  

Figure 4 presents the a x i a l  temperature prof i les  t h a t  were measured 

i n  the f l u i d  a t  various t i m e s  a f t e r  start of heating f o r  a flowing system 

with nonuniform source heating and w a l l  heating. 

t i a l l y  the  same as  fo r  the nonflowing case except that the s t r a t i f i e d  

layer is seen t o  be carr ied w i t h  the  f l u i d  during discharge. 

The r e s u l t s  a r e  essen- 

ANALYSIS 

The problem t o  be considered here is  that of aetermining the temgera- 

ture d is t r ibu t ion  within the propellant that results from nuclear and 

w a l l  heating fo r  a constant pressure discharge. The mathematical d i f f i -  

c u l t i e s  i n  solving the exact equations of motion f o r  t h i s  problem are 

considerable. 

by approximate methods. 

satisfy the governing equations fo r  every f l u i d  par t ic le ,  but chooses 

instead a plausible temperature prof i le  i n  the tank that i s  made t o  

s a t i s f y  the momentum and energy equation based on the en t i r e  f l u i d  i n  

the tank. 

It was therefore thought desirable t o  obtain a solution 

The method used herein abandons the  attempt t o  

The first objective of the task w a s  t o  develop a fiow model on which 

an analysis could be based. 

obtained in the infrared experiments. 

a summary of an analysis  reported i n  an unpublished memorandum by B. H. 

Anderson, NASA L e w i s  Research Center. 

This was accomplished by using the  r e s u l t s  

The analysis that follows presents 
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Formulation of Analytical Flow Model 

The heat that i s  dis t r ibuted within the propellant is  considered t o  

have i t s  or ig in  from two sources, heat t ransfer  from the  walls of the tank 

and heating induced by the absorption of nuclear radiat ion.  

set down by Eckert ( r e f .  5), f o r  determining whether forced or  fYee con- 

vection is the dominant mechanism of heat t ransfer  from the walls, indi-  

ca t e  that a turbulent f r ee  convection boundary layer  w i l l  form f o r  most 

mission applications tha t  have been considered. The free convecteon 

boundary layer  thus established w i l l  carry w a r m  f lu id ,  as indicated i n  

the infrared studies,  toward the l iqu id  surface t o  form a temperature 

gradient ( see  f i g .  5 ) .  

f i e d  layer as a r e s u l t  of wal l  heating is assumed t o  be of the form 

The c r i t e r i a  

The temperature r i s e  thus formed i n  t h i s  strati- 

T ( x , t )  - Ti = (Ts - T i ) r  xoy 
where 

a t  t i m e  t, Ts - T i  is the difference between the surface and i n i t i a l  

temperature, xo is the lower extremity of the s t r a t i f i e d  layer, 6 i s  

the thickness of the s t r a t i f i e d  layer, and n is an unknown fac tor  t o  

be determined. 

T(x, t )  i s  the temperature within the s t r a t i f i e d  layer  a t  s t a t ion  x 

That par t  of the  heat  induced by the  absorption of nuclear radiat ion 

below the  s t r a t i f i e d  layer  is considered t o  form a uniform temperature 

p ro f i l e .  

form 

The temperature rise i n  this  region is considered t o  have the 

T ( t )  - T i  = (Ts - T i ) f ( t )  ( 2 4  

where the unknown function f ( t )  represents t h e  r i s e  i n  the  bulk tempera- 

t u re  ra t ioed  t o  the temperature difference Ts - T i .  The contribution of 
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t h e  nuclear heating i n  the  s t r a t i f i e d  l aye r  i s  considered t o  be d i s t r ibu ted  

according t o  the  r e l a t ion  

The d i s t r ibu t ion  of w a l l  and nuclear heating thus formulated by equa- 

t i o n s  (1) and ( 2 )  i s  i l l u s t r a t e d  schematically i n  f igure  5 by t h e  tempera- 

t u r e  rise a t t r ibu ted  t o  each contribution. A t  t he  l i q u i d  surface the  t e m -  

perature  becomes T(x,,t) = T,, while t he  temperature r i s e  contributed by 

t h e  nuclear heating vanishes. A t  the  lower extremity of t h e  s t r a t i f i e d  

layer ,  x = ~ 0 ,  the w a l l  contribution t o  temperature r i s e  vanishes while 

temperature rise contributed by nuclear heating becomes (T, - T i ) f ( t ) .  

The temperature p r o f i l e  w i t h i n  t h e  s t r a t i f i e d  layer is obtained by adding 

tha t  contributed from nuclear heating t o  t h e  assumed w a l l  temperature 

prof i le .  

Growth of S t r a t i f i e d  Layer 

To obtain t h e  development of the  stratified l a y e r  i n  the  course of 

t i m e ,  it i s  assumed tha t  t h e  resulting temperature d i s t r ibu t ion  i n  t he  

f l u i d  varies only i n  t h e  axial  direction. Thus, after introducing t h e  

l i q u i d  l e v e l  xs as t h e  independent variable by means of t h e  expression 

and assuming t h a t  t h e  physical properties of t he  f l u i d  do not vary s ig-  

n i f i can t ly  over t h e  temperature range under consideration, the  energy 

equation can be wri t ten i n  t h e  form 
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P S  

As previously indicated, theftemperature distribution in the propellant 

when nuclear and wall heating are present results in two distinct regions 

forming a lower region where the temperature is uniform and a stratified 

layer. 

be written as 

From equations (1) and (2), the composite temperature profile can 

where 

~(x,x,) = T(x,x~) - Ti 
Sref = Ts - Ti 

Consistent with the formulation of the flow model, the functions T(x,xs) 

and $(x,xs) can be written explicitly as 

Jr(x,xs) = 0 

cp(x,xs> = 1.0 Olx<x() 

Introducing equation (4) into equation (3) and making the assumption that 

the contribution of w a l l  and nuclear heating can be uncoupled in the 

energy equation, then equation (3) can be written as 
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where 

The l e f t  hand side of equation (6) can be integrated by successive in t e -  

gra t ion  by par t s ,  thus 

r 

L J 

The a pos t e r io r i  assumption i s  now m a d e  t h a t  t h e  exponent n is not a 

function of t i m e .  

n 

By considering a cyl indrical  geometry, t he  so lu t ion  f o r  

can be obtained from equation (9)  and the  momentum equation wr i t ten  f o r  

t he  cy l indr ica l  tank. This gives 

'ref 
'W 

n = 3.94 - - 1.0 

"he assumption i s  now made t h a t  equation (10) i s  a va l id  f irst  order ap- 

proximation f o r  the exponent n, which may be used f o r  noncylindrical  
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geometries. 

t i o n  ( 9 )  f o r  t h e  general  tank geometry. 

The stratif ied layer  growth can now be evaluated from equa- 

The lower extremity of t h e  s t r a t i f i e d  layer i s  given by the  r e l a t ion  

xo = xs - 6(x,) (11) 

The period of growth of t h e  s t r a t i f i e d  l aye r  can now be exp l i c i t l y  defined 

as 0 5 % 5 + Defining t h e  locat ion of t h e  l i qu id  l e v e l  when q) = 0 as 

then a la te r  period i s  defined as 0 ,< xs ,< x ~ , ~ ,  i n  which t h e  e x i t  
XS,-L’ 

por t  feels t h e  presence of t h e  s t r a t i f i e d  layer. 

Temperature Distribution i n  I n i t i a l  Period 

The solut ion of t h e  temperature p ro f i l e  i n  t h e  propellant during t h e  

growth of t h e  s t r a t i f i e d  layer can now be obtained from equation ( 7 ) .  

Thus, after simplification, equation ( 7 )  becomes 

s e t t i n g  

The function 

from t h e  solut ion of equation (14), together with the  i n i t i a l  condition 

t h a t  f ( L )  = 0, where L i s  t h e  i n i t i a l  l i q u i d  level .  

f(x,) t h a t  appears i n  equation (4 )  can now be determined 
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Temperature Distribution i n  Later Period 

As mentioned, the  la ter  period begins when t h e  exit port  first f e e l s  

t h e  presence of t he  s t r a t i f i e d  layer. This occurs when the  depth of t he  

s t r a t i f i e d  layer equals the l i q u i d  level. 

e x i t  po r t  sees a temperature r i s e  due t o  the  temperature p r o f i l e  being 

During the  la ter  period, t he  

car r ied  with t h e  f l u i d  i n  addition t o  a temperature rise from heat being 

added t o  the  system. 

t i o n  i s  made t h a t  

To account f o r  both of these processes, the assump- 

where 

@(X,X,) = 1.0 - 1.0 - xs - xr 0 5 XS xs ( +, 2 
Equation (15) s a t i s f i e s  the  condition t h a t  a t  

p ro f i l e s  are matched provided 

xs = x ~ , ~ ,  t h e  temperature 

F(Xs,2) = f (xs , z )  

Introducing equation (15) i n t o  t h e  energy equation and simplifying 

where 

G(x~) = 1.0 - F(x,) 
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Equation (18) together with the i n i t i a l  condition t h a t  

1.0 - f ( X s , 2 )  comprise t h e  mathematical formulation of t he  problem i n  

t h e  la ter  period. 

Gfx,,~) = 

LIQUID HYDROGEN EXPERIMENTS 

I n  t h e  previous sections,  it w a s  shown how da ta  from t h e  inf ra red  

rad ia t ion  program provided the  fundamental assumptions f o r  a propellant 

heating ana ly t ica l  flow model. This analysis will now be applied t o  t h e  

r e s u l t s  of two l i q u i d  hydrogen experiments. One of t h e  experiments con- 

ducted a t  t h e  Lewis Research Center consists of s tud ies  wherein only the  

w a l l s  of the  tank are heated. I n  t h e  other,  neutron and gamma ray radia- 

t i o n  from a nuclear reac tor  provided the mechanism f o r  heat generation i n  

t h e  tank w a l l s  and in t e rna l ly  i n  the f luid.  The la t te r  e f f o r t  w a s  con- 

ducted under contract  t o  t h e  General Dynamics Corporation, Fort Worth, 

Texas. 

W a l l  Heating Experiments 

These experiments were conducted primarily t o  t e s t  t h e  appl icat ion 

of t h e  ana ly t ica l  flow model t o  l i qu id  hydrogen. 

i n  which w a l l  heating w a s  applied t o  both t h e  s ide  w a l l s  and t o  the  

Tests were conducted 

bottom w a l l  of t h e  tank. Comparisons are then made between t h e  experi- 

mental and t h e  ana ly t ica l  results. 

Apparatus and procedure. - The l iqu id  hydrogen w a l l  heating experi- 

ments were conducted using a cyl indrical  tank with a conical bottom having 

a nominal l i q u i d  capacity of 125 g d l o n s  ( f ig .  6) .  

cy l indr ica l  w a l l s  joined with a spherical  zone t o  a frustrum of a 45' hal f -  

angle cone. 

spher ica l  segment. 

The 32-inch-diameter 

The cone w a s  terminated by joining t o  a 4.8-inch-diameter 

A 3/4-inch schedule 40 pipe attached t o  t h e  bottom 
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provided f o r  t h e  egress of l iquid.  

an evacuated she l l ,  which provided thermal  insulation. Means f o r  in t ro-  

ducing gaseous hydrogen at ambient temperature (-60' F) w a s  provided t o  

pressurize  and maintain tank pressure with a minimum disturbance t o  t h e  

l i q u i d  surface. 

t a ined  constant by adjustment of a t h r o t t l e  valve. 

t r o l l e d  t o  t h e  cy l indr ica l  tank w a l l  and t o  t h e  tank bottom using e l e c t r i c  

rad ian t  heaters  suspended i n  t h e  vacuum space. Temperatures at  several  

a x i a l  locat ions were measured using carbon r e s i s t o r s  attached t o  a rake 

extending down the  center l ine of t h e  tank. 

The test tank was suspended ins ide  

Liquid outflow w a s  measured using a ventur i  and w a s  main- 

W a l l  heating w a s  con- 

R e s u l t s  and discussion. - Two t e s t s  are presented f o r  which the per- 

I n i t i a l  Flow rate, 
temperature, lb/sec 

OR 

t i n e n t  t e s t  conditions are shown i n  the following table:  

Pressure, 
ps i a  z Heat flux, 

wat ts / f t2  

1 

2 

I n i t i a l  
height of 
l iqu id ,  

I n  the  first 

38.45 I .0396 I 34-5 

test  t h e  same heat f l u x  was used f o r  both t h e  tank w a l l  and 

t h e  tank bottom. 

except t h a t  t h e  value of heat f lux was increased from 3.32 t o  9.23 w a t t s  

pe r  square foot. 

The second tes t  w a s  essent ia l ly  a repeat of t h e  first 

The measured temperature h is tory  f o r  tests one and two are presented 

i n  f igu res  7(a) and 7(b),  respectively. The temperature rise after t h e  

start of flow is shown f o r  several  heights along t h e  tank centerline.  

dot ted l i n e  normal t o  each curve indicates t h e  temperature r ise necessary 

t o  achieve sa tura t ion  a t  each height. 

sponding ana ly t ica l  predictions obtained from the  analysis  using the  t e s t  

The 

The dashed l i n e s  show the  corre- 
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conditions of t he  preceding table as input data. For these predict ions 

t h e  heat f l u x  below the  cy l indr ica l  w a l l  w a s  considered as contr ibut ing 

t o  bulk heating, whereas the  cyl indrical  w a l l  heat f l u x  contributed t o  

boundary l aye r  flow. 

A comparison of t he  measured temperature rise below the l i q u i d  sur- 

face shows that only a s l i g h t  gradient existed i n  the bulk of l i q u i d  f o r  

e i t h e r  test. 

the  magnitude of t he  temperature r i s e  of the l i q u i d  bulk w a s  proportional 

t o  the heat flux. 

temperature rises rapidly t o  the  saturat ion temperature, thus indicat ing 

the  s t r a t i f i e d  l aye r  above the bulk o f  l iquid.  

Although t h i s  gradient w a s  about the same f o r  each test, 

As t he  l i q u i d  surface approaches each sensor, the  

A comparison between the  measured temperature r i s e  ( s o l i d  l i n e )  and 

the  calculated temperature rise (dashed l i n e )  indicates  general  agreement 

ex is t ing  (f ig .  7). The calculated temperature prof i les ,  however, did ’ 

not ind ica te  as l a r g e  a temperature gradient i n  t h e  hydrogen as w a s  

indicated by experiment. 

s ion f o r  t h e  exponent n, equation (10). The discrepancies between the 

measured and calculated temperature histories at  the  tank exit (sensor 

height, 0 in . )  w a s  due t o  s l i g h t  uncertaint ies  i n  the  measured heating 

rates . 

This was due t o  the  use of a s implif ied expres- 

Nuclear Radiation Ekperiments 

A s e r i e s  of t e s t s  were conducted under contract  t o  the General 

Dynamics Corporation, Fort  Worth, Texas, t o  obtain propellant heating 

data using a nuclear reac tor  as the energy source (ref .  6).  

mental e f f o r t  w a s  composed of th ree  se r i e s  of t e s t s :  

The experi- 

nuclear rad ia t ion  
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f l u x  mapping, gross heat determination, and flow charac te r i s t ics  

s tudies .  The first two were fundamental t o  es tabl ishing the  test  

environment f o r  in te rpre t ing  t h e  resu l t s  of t h e  flow studies. 

Apparatus and procedure. - The test configuration employed is 

shown i n  f igure  8. 

used i n  the  w a l l  heating experiments, w a s  mounted above the Aerospace 

Systems T e s t  Reactor (ASTR) a t  General Dynamics Corporation. 

was insu la ted  t o  provide a maximum ambient heat  l eak  of 50 watts. 

D e w a r  assembly w a s  surrounded by a l i n e r  tank t h a t  functioned as a 

b a r r i e r  from t h e  sh i e ld  water. This shielding w a s  necessary t o  prevent 

excessive rad ia t ion  exposure t o  personnel outside of the immediate area. 

The arrangement w a s  such that t h e  reactor could be positioned e i t h e r  

immediately adjacent t o  t h e  l i n e r  tank o r  separated f r o m  it with water 

between t h e  two. 

enabled testing with d i f f e ren t  heating rate gradients i n  t h e  l i q u i d  

hydrogen. 

A tes t  tank, geometrically iden t i ca l  t o  t h e  one 

The tank 

The 

This water, by v i r tue  of i t s  shielding propert ies ,  

Platinum res i s tance  thermometers were posit ioned throughout the 

tank t o  y i e ld  temperature h i s t o r i e s  i n  t h e  l i q u i d  and ullage gas. Other 

measurements included radiat ion level ,  pressure, and l i q u i d  and gas mass 

flow rates. 

Neutron and gamma ray fluxes,  which were used t o  ca lcu la te  the heat  

deposit ion rates, were determined by both experiment and calculation. The 

calculated values were obtained by use  of  t h e  C-17 computer code (ref.  7). 

The measured values were obtained by i r r a d i a t i o n  of neutron f o i l s  and 

gamma ray dosimeters mounted throughout t h e  system. 

conducted with and without l i q u i d  hydrogen i n  t h e  tank. 

I r r ad ia t ions  w e r e  
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For fu r the r  ver i f ica t ion  of the gross heating of t h e  system, self- 

pressurizat ion tests were also conducted. Temperatures i n  the l i q u i d  

and ullage gas and ullage pressure were measured as a function of time 

when the reac tor  w a s  at power and t h e  tank closed. An energy balance 

yielded the gross heating of t h e  system. 

i n i t i a l  l i q u i d  levels. 

Tests w e r e  repeated f o r  several 

I n  addition t o  nuclear heating, t he  hydrogen receives heat from the 

following ambient thermal processes: conduction from instrument leads, 

other  penetrations and the insulation, and thermal rad ia t ion  from the 

outer  shell .  The value of this ambient heat leak w a s  a l so  obtained from 

self-pressurizat ion tests. 

For t h e  f i n a l  series of tests, hydrogen w a s  permitted t o  flow from 

(The ac tua l  flow rate t h e  tank at  approximately 0.04 pound per second. 

varied somewhat from run t o  run and i n  some cases during the  course of 

t he  run). During these runs, t h e  ullage pressure w a s  held constant at  

a value of about 30 psia. 

The i n i t i a l  s t ep  f o r  t he  flow runs w a s  t o  achieve t h e  desired tank 

pressure. 

immediately thereaf te r ,  flow was started. 

during the flow portio'n &f t h e  test. 

The reac tor  w a s  then taken t o  the  appropriate power leve l ;  

Data were taken p r i o r  t o  and 

Results and discussion. - I n  general, agreement between measured 

and calculated rad ia t ion  f lux  values w a s  within A20 percent. ( N o  further 

discussion will be conducted here regarding the rad ia t ion  f luxes  s ince a 

complete summary appears i n  ref. 6.)  The data  presented i n  f i g u r e  9 show 

t h e  manner i n  which the  rad ia t ion  attenuated through t h e  hydrogen. Since 

heating rates are d i r ec t ly  proportional t o  reactor  power level, the values 

. 
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presented on the  figure have been normalized t o  a reactor  power of 

1 megawatt. It i s  seen here that fo r  both configurations more heat i s  

deposited i n  the  l i q u i d  near t he  bottom of the  tank than near the top. 

This difference i s  more pronounced f o r  configuration I than f o r  con- 

f igura t ion  I1 and i s  a direct result of the addi t ion of 4 inches of 

water between the reac tor  and t a n k  f o r  configuration 11. 

serves as a shield against  rad ia t ion  reducing the neutron flux by about 

a f a c t o r  of f i v e  and the  gamma ray flux by a f a c t o r  of two. 

having the  4 inches of w a t e r  i n  con%iguration 11, eliminating much of 

t h e  neutron flux, t he  heating gradient i n  the  tank assumes a d is t r ibu-  

t i o n  more l i k e  tha t  of the gamma rays; having less at tenuat ion through 

t h e  hydrogen. 

This water 

Thus by 

The gross heating of system was determined by (a) in tegra t ing  t h e  

calculated nuclear data and by (b) calculations from self-pressurizing 

data. The shapes of the curves generated by t h e  two methods were very 

similar although t h e  magnitudes of corresponding values differed by about 

20 percent. 

tha t  t h e  program used f o r  the nuclear calculat ions could not accommodate 

p a r t i c l e s  with energies less than 0.1Mev. I n  view of t h i s  it w a s  con- 

cluded t h a t  t h e  heating obtained from the  self-pressurizing tes ts  repre- 

Most of t h i s  difference can be accounted f o r  by the f a c t  

sented a t r u e r  measure of t h e  gross heating and, as such, should be used 

i n  analyzing the  experimental results. 

Figures lO(a) and 10(b) are composite graphs of heating rate showing 

the  contributions of ambient, nuclear w a l l ,  and nuclear source heating as 

functions of l i q u i d  level .  

and f igu re  10(b) presents t h a t  f o r  configuration 11. 

Figure lO(a) shows data f o r  configuration I 

Inasmuch as the  
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nuclear and nuclear w a l l  heating a re  proportional t o  reac tor  power, t h e  

curves have been normalized t o  a power of 1 megawatt. 

ing  curves are independent of power lever. 

two figures correspond t o  the ac tua l  self-pressurizat ion data. 

heating curves were generated by adjusting the nuclear derived heating 

d i s t r ibu t ions  t o  self-pressurizat ion data a t  one point. 

shows the  point of adjustment. 

s ince  they are independent of configuration, but t he  values of nuclear 

w a l l  and source heating rates a re  quite different. 

The ambient heat- 

The data points  shown on the  

Total  

The shaded symbol 

The ambient heating curves are iden t i ca l  

The tes t  parameters f o r  the two flow tes ts  presented are as follows: 

I n i t i a l  
height of 
l iquid,  

f t  

3.44 

3.60 

power, 
megawatt 

I n i t i a l  Flow rate, Pressure 
temperature, lb/sec p s i a  

OR 

37.0 0.039 30 

37.5 .055 29.8 

Configuration I 1 0.55 

Configuration I1 
(4 in.  of water) 

.985 
I I I 

The major difference between the  two tests i s  t h a t  of reac tor  configura- 

t i o n  and thus heating d is t r ibu t ion  i n  the  hydrogen. The reac tor  power 

l e v e l  w a s  adjusted t o  y ie ld  approximately the same f i n a l  bulk temperature 

rise. 

it can be seen that they differed s l ight ly .  

The heating rates f o r  t h e  two tests can be obtained from f igu res  

Attempts were made t o  have t h e  o ther  parameters the same although 

lO(a) and 10(b)  by multiplying the  nuclear contributions by the  proper 

reac tor  power level .  

nearly t h e  same and the  t o t a l  source heating i s  about t h e  same but  the 

shape of the  curves differ. 

The w a l l  heating curves f o r  t h e  two tests are very 
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"he temperature h i s to r i e s  obtained w i t h  reactor-tank configurations I 

and I1 are presented i n  figures l l ( a )  and l l ( b ) ,  respectively.  

severa l  sensors located on the  ve r t i ca l  axis are presented. 

rise a t  each sensor locat ion,  i n  t h e  time period p r i o r  t o  the  l i qu id  sur- 

face  passing that probe, indicated a uniform bulk temperature rise. 

the  l i q u i d  surface approached the  sensor, a rapid r i s e  i n  temperature w a s  

indicated.  

A comparison of the experimental data (symbols) with analysis  (dashed l i n e )  

ind ica tes  t he  same trend. 

t h i s  section, t he  analysis,  i n  general, w a s  able t o  predict  the  tempera- 

t u r e  h is tory  at  each sensor loca t ion  with reasonable accuracy. 

again, t h e  assumption w a s  m a d e  t ha t  all t h e  heat  i n  the  sect ion below 

the cylinder be assigned t o  bulk heating. 

D a t a  f o r  

The temperature 

As 

This w a s  caused by t h e  s t r a t i f i e d  l aye r  passing tha t  probe. 

Using the input data presented i n  the  table of 

Once 

CONCLUDING REMARKS 

This paper has described an approximate method t o  obtain the tempera- 

ture h i s to ry  of a f l u i d  contained i n  a tank which is  subjected t o  nuclear 

and w a l l  heating. Under conditions of r e l a t i v e l y  low w a l l  heat. f lux,  w i t h  

and without nuclear heating, t h e  temperature p r o f i l e s  obtained from the  

ana lys i s  agree w e l l  with experimental data. However, t h e  temperature 

gradients  i n  t h e  f l u i d  d i f f e r  s l ight ly .  With higher amounts of w a l l  heat- 

ing, t h i s  difference i s  more pronounced. This w a s  caused primarily by t h e  

use of a simplified expression f o r  the exponent used i n  describing t h e  

temperature prof i le .  

temperature p r o f i l e  that  i s  made t o  sa t i s fy  conservation of energy gives 

su f f i c i en t ly  accurate results t o  warrant f u r t h e r  exploration. 

The approximate technique of assuming a plausible  
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Although t h e  gross aspects of the propellant heating problem have 

been determined herein, t h e  important question of t h e  de ta i led  f l u i d  

descr ipt ion under ac tua l  f l i g h t  conditions where many more f ac to r s  are 

introduced is  y e t  t o  be determined. 
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Figure 1. - Schematic diagram of test apparatus. 
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Figure 2 -Axial temperature distribution with wall and nonuniform-source 
heating, nonflwing system. 
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Figure 3. - Schlieren photographs showing flow patterns resulting from nonuniform 
source and wall heating. 

I Y 

5 
E e 

l ime after start 

--- Surface tempemture 

J 
0 4 a 12 16 P 24 28 32 36 

Temperature rise, OR 

Figure 4. -Axial temperature distribution with wall and nonuniform-source heating, 
flaning system. 
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Figure 5. - Schematic diagram of f l w  model. 
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Figure 6. -Electric tank heating experiment. 
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(b) Test 2 
Figure 7. - Temperature hidory of liquid hydrogen wall-heating 

experiment. 
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Figure 8. - Nuclear tank heating experiment 
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Figure 9. -Test tank centerline heating rates in liquid hydrogen per megmVatt of 
reactor power. 
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Figure IO. - Total heating in liquid hydrogen per megawatt of reactor paver. 
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Figure 11. -Temperature history of liquid hydrogen nuclear heating experiment. 
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